speed limits and symmetry breaking

Adolfo del Campo DIPC

Engineering Quantum Open Systems
Workshop EQOS2019
February 12th, 2019

Quantum Science & Technology group @ UMass Boston

Quantum Science & Technology group @ UMass Boston

Quantum Science & Technology group @ DIPC & UPV-EHU

Dynamics of open systems

big problem: quantum behavior is fragile

evolution is unitary only under extremely controlled laboratory conditions

quantum traits disappear

entanglement non-classical correlations

effectively classical

Dynamics of open systems

We'd like

$$\frac{d\rho_t}{dt} = -i[H, \rho_t]$$

instead, forced to deal with non-unitary dynamics

$$\frac{d\rho_t}{dt} = -i[H, \rho_t] + \mathcal{D}[\rho_t] \equiv L[\rho_t]$$
$$= -i[H, \rho_t] - \kappa[A, [A, \rho_t]]$$

Environmental decoherence

...

fluctuating Hamiltonians, uncontrolled sources of noise, uncertainties in the model...

but, another situation can lead to identical dynamics:

system being monitored by an observer

System on which observable "A" is consecutively measured

Infinitesimally weak measurements – continuous quantum measurement

Weak measurement

Observing outcome "r" gives information of post-measurement state

Conditioning on "r" can be modeled by

$$\rho \to \frac{\mathcal{M}_r \rho \mathcal{M}_r^\dagger}{Tr[\mathcal{M}_r \rho \mathcal{M}_r^\dagger]} \qquad \qquad \mathcal{M}_r = \sum_{m=\pm 1} \left(\frac{4\kappa dt}{\pi}\right)^{1/4} e^{-2\kappa dt (r-m)^2} |\text{m}><\text{m}| \quad \frac{\text{Gaussian}}{\text{measurements}}$$

"Quantum Measurement Theory and its Applications" K. Jacobs

"Quantum Measurement and Control" Wiseman and Milburn

Equivalent master equation:

ester equation:
$$d\rho_t^{\mathcal{C}} = -i[H, \rho_t^{\mathcal{C}}]dt + \mathcal{D}[\rho_t^{\mathcal{C}}]dt + I[\rho_t^{\mathcal{C}}]dW_t$$

$$= -i[H, \rho_t^{\mathcal{C}}]dt - \kappa \left[A, [A, \rho_t^{\mathcal{C}}]\right]dt - \sqrt{2\kappa}(\{A, \rho_t^{\mathcal{C}}\} - 2\operatorname{Tr}[A\rho_t^{\mathcal{C}}]\rho_t^{\mathcal{C}})dW_t$$

$$\rho_t^{\mathcal{C}} \rightarrow \underline{conditioned}$$
 state

$$dW_t o ext{ white noise: } \langle dW_t \rangle = 0; \ \langle dW_{t_1} dW_{t_2} \rangle = \delta_{\{t_1,t_2\}} dt$$

 $\kappa \rightarrow \text{measurement strength} - \text{backaction and timescale of information acquisition}$

measurement output: observable masked by noise

$$r_t dt = Tr(\rho_t A) dt + \frac{1}{\sqrt{8\kappa}} dW_t$$
 value of observable

measurement output: observable cloaked by noise

$$r_t dt = \text{Tr}(\rho_t^{\mathcal{C}} A) dt + \frac{1}{\sqrt{8\kappa}} dW_t$$

$$\left(\rho \longrightarrow \frac{\mathcal{M}_r \rho \mathcal{M}_r^{\dagger}}{Tr[\mathcal{M}_r \rho \mathcal{M}_r^{\dagger}]}\right)$$

QUANTUM PHYSICS

ANDREW N. JORDAN

Watching the wavefunction

The continuous random path of a supercond been tracked as the state changes during me possibility of steering quantum systems into

LETTER

doi:10.1038/nature12539

Observing single quantum trajectories of a superconducting quantum bit

Time (µs)

Figure 3 Quantum trajectories. a, b, Individual mea

K. W. Murch^{1,2}, S. J. Weber¹, C. Macklin¹ & I. Siddiqi¹

Murch, Weber, Macklin, and Siddiqi; Nature 2013 Weber et. al.; Comptes Rendus Physique 2016

SU

measurement output: observable cloaked by noise

$$r_t dt = \text{Tr}(\rho_t^{\mathcal{C}} A) dt + \frac{1}{\sqrt{8\kappa}} dW_t$$

$$\left(\rho \to \frac{\mathcal{M}_r \rho \mathcal{M}_r^{\dagger}}{Tr[\mathcal{M}_r \rho \mathcal{M}_r^{\dagger}]}\right)$$

filtering

path reconstruction

LETTER

doi:10.1038/nature19762

Quantum dynamics of simultaneously measured non-commuting observables

Shay Hacohen-Gourgy^{1,2*}, Leigh S. Martin^{1,2,3*}, Emmanuel Flurin^{1,2}, Vinay V. Ramasesh^{1,2}, K. Birgitta Whaley^{3,4} & Irfan Siddiqi^{1,2}

FIG. 2. Example filtered output signals $\bar{r}_x(t)$ (top; solid blue trace) and $\bar{r}_z(t)$ (bottom; solid blue trace) and qubit Bloch coordinates

Observer with access to outcomes describes system by

$$d\rho_t^{\mathcal{C}} = -i \big[H, \rho_t^{\mathcal{C}} \big] dt + \mathcal{D} \big[\rho_t^{\mathcal{C}} \big] dt + I \big[\rho_t^{\mathcal{C}} \big] dW_t = L \big[\rho_t^{\mathcal{C}} \big] dt + I \big[\rho_t^{\mathcal{C}} \big] dW_t$$

In contrast, <u>agent without access</u> describes system by $\rho_t \equiv \langle \rho_t^c \rangle$, averaging out the unknown random results

Our motivation: study difference between conclusions from both descriptions

Setting 1

Speed of evolution and Quantum Speed Limits

joint with Luis Pedro Garcia-Pintos, arXiv: 1804.01600 (2018)

Quantum Speed Limits

Courtesy of Guy Chenu

Quantum Speed Limits

Beautiful history

Passage time: Minimum time required for a state to reach an orthogonal state

Landau Krylov

1945 Mandelstam and Tamm "MT"

1967 Fleming

1990 Anandan, Aharonov

1992 Vaidman, Ulhman

1993 Uffnik

1998 Margolus & Levitin "ML"

2000 Lloyd

2003 Giovannetti, Lloyd, Maccone: MT & ML unified

2003 Bender: no bounds in PT-symmetric QM

2009 Levitin, Toffoli

2013 Bound for open (as well as unitary) system dynamics! 2013

Speed of evolution

Limits to the speed of evolution

Mandelstam Tamm

$$\left| \frac{d \operatorname{Tr}(A \rho_t)}{dt} \right| \le \Delta_{\rho_0} H \Delta_{\rho_0} A$$

Margolus Levitin

$$\tau_T \ge \frac{1}{2\text{Tr}(\rho_0 H)}$$

Fundamental limits for systems evolving unitarily

Extensions to open systems governed by Lindbladian dynamics

$$\frac{d\rho_t}{dt} = -i[H, \rho_t] + \mathcal{D}[\rho_t]$$

Mandelstam and Tamm, J. Phys. (USSR) 1945 Aharonov and Bohm, Phys. Rev. 1961 Margolus and Levitin, Phys. D 1998 Taddei, Escher, Davidovich, de Matos Filho; PRL 2013 del Campo, Egusquiza, Plenio, S. F. Huelga; PRL 2013 Deffner and Lutz; PRL 2013

Limits to the speed of evolution

consider Fidelity quantify deviation from (pure) initial state

$$F(t) = \text{Tr}[\rho_0 \rho_t]$$

Fidelity change after au

$$\Delta F = \int_0^{\tau} \dot{F}(t) dt = \int_0^{\tau} \text{Tr}[\rho_0 \dot{\rho_t}] dt = -\tau \mathcal{V}$$

with the *velocity*
$$\mathcal{V} \equiv -\frac{1}{\tau} \int_0^{\tau} \mathrm{Tr}[\rho_0 \dot{\rho_t}] \, dt$$

$$d\rho_t = \langle d\rho_t^c \rangle = -i[H, \rho_t]dt + \mathcal{D}[\rho_t]dt$$

$$d\rho_t^{\mathcal{C}} = -i[H, \rho_t^{\mathcal{C}}]dt + \mathcal{D}[\rho_t^{\mathcal{C}}]dt + I[\rho_t^{\mathcal{C}}]dW_t$$

Limits to the speed of evolution

$$d\rho_t = \left\langle d\rho_t^{\mathcal{C}} \right\rangle = L[\rho_t]dt$$

velocity
$$\mathcal{V} \equiv -\frac{1}{\tau} \int_0^{\tau} \text{Tr}[\rho_0 \langle d\rho_t^{\mathcal{C}} \rangle]$$

Ignorant agent thus expects $V \leq V_{OSL}$

$$v_{QSL} = \frac{1}{\tau} \int_0^{\tau} ||L(\rho_t)|| dt$$

traditional bound on speed studied in literature

$$\mathcal{V}_{\mathcal{C}} \equiv -\frac{1}{\tau} \int_{0}^{\tau} \text{Tr}[\rho_{0} L[\rho_{t}^{\mathcal{C}}]] dt$$
$$-\frac{1}{\tau} \int_{0}^{\tau} \text{Tr}[\rho_{0} I[\rho_{t}^{\mathcal{C}}]] dW_{t}$$

Limits to the speed of evolution

Agent with access to outcomes finds

$$\langle \mathcal{V}_{\mathcal{C}} \rangle = \mathcal{V}$$
 $\langle \mathcal{V}_{\mathcal{C}}^2 \rangle \neq 0$ a random variable!

$$\langle \mathcal{V}_{\mathcal{C}}^{2} \rangle = \left\langle \overline{\operatorname{Tr} \left(\rho_{0} L[\rho_{t}^{\mathcal{C}}] \right)^{2}} \right\rangle$$

$$+ \frac{2}{\tau} \left\langle \overline{\operatorname{Tr} \left(\rho_{0} L[\rho_{t_{1}}^{\mathcal{C}}] \right)} \int_{0}^{\tau} \operatorname{Tr} \left(\rho_{0} I[\rho_{t_{2}}^{\mathcal{C}}] \right) dW_{t_{2}} \right\rangle$$

$$+ \frac{1}{\tau^{2}} \left\langle \int_{0}^{\tau} \int_{0}^{\tau} \operatorname{Tr} \left(\rho_{0} I[\rho_{t_{1}}^{\mathcal{C}}] \right) \operatorname{Tr} \left(\rho_{0} I[\rho_{t_{2}}^{\mathcal{C}}] \right) dW_{t_{1}} dW_{t_{2}} \right\rangle.$$

$$(15)$$

Example on qubit, monitoring of $\sigma_{\!\scriptscriptstyle Z}$

$$H = \frac{\omega}{2} \sigma_y$$

Velocity distribution

Speed limits

Distribution of travel times to a target Fidelity

Speed limits

Traditional derivations of speed limits had focused on

$$\frac{d\rho_t}{dt} = -i[H, \rho_t] + \mathcal{D}[\rho_t]$$
$$= -i[H, \rho_t] - \kappa[A, [A, \rho_t]]$$

Extended to monitored systems, dynamics non-linear in state

$$\begin{split} d\rho_t^{\mathcal{C}} &= -i \big[H, \rho_t^{\mathcal{C}} \big] dt + \mathcal{D} \big[\rho_t^{\mathcal{C}} \big] dt + I \big[\rho_t^{\mathcal{C}} \big] dW_t \\ &= -i \big[H, \rho_t^{\mathcal{C}} \big] dt - \kappa \left[A, \left[A, \rho_t^{\mathcal{C}} \right] \right] dt - \sqrt{2\kappa} \big(\left\{ A, \rho_t^{\mathcal{C}} \right\} - 2 \operatorname{Tr} \big[A \rho_t^{\mathcal{C}} \big] \rho_t^{\mathcal{C}} \big) dW_t \end{split}$$

Velocity becomes stochastic, with trajectories traveling faster than what an agent ignorant of measurement outcomes would expect

Monitoring of a many-body system: symmetry breaking

joint with Luis Pedro Garcia-Pintos and Diego Tielas arXiv:1808.08343 (2018)

Spontaneous symmetry breaking: process by which <u>one</u> state is singled out, out of a set indistinguishable by the dynamics

Usual ways to explain it:

tiny perturbation to Hamiltonian

tiny perturbation to state

we consider: quantum monitoring as cause of symmetry breaking

spin chain, initially

$$|\Psi(0)\rangle = \bigotimes_{j=1}^{N} |\to\rangle_{j}$$

quenched to Hamiltonian

$$H = \Delta \sum_{j} \sigma_{j}^{z} \sigma_{j+1}^{z}$$

monitoring of individual spins

$$d\rho_t = \left\langle d\rho_t^{\mathcal{C}} \right\rangle = L[\rho_t]dt$$

evolution expected by ignorant agent does not distinguish states!

$$d\rho_t = \left\langle d\rho_t^{\mathcal{C}} \right\rangle = L[\rho_t]dt$$

$$L[\rho_t] = -i[H,\rho_t] - \kappa \sum_j \left[\sigma_j^z, \left[\sigma_j^z, \left[\sigma_j^z, \rho_t\right]\right]\right]$$

Gephasing operators [4,8j3]=0
do not break symmetry

monitoring term singles out a direction

$$d\rho_t^{\mathcal{C}} = L[\rho_t^{\mathcal{C}}]dt + \sum_j I_j[\rho_t^{\mathcal{C}}]dW_t^j$$
$$I_j[\rho_t^{\mathcal{C}}] = \sqrt{2\kappa}(\{\sigma_j^z, \rho_t^{\mathcal{C}}\} - 2Tr[\sigma_j^z \rho_t^{\mathcal{C}}]\rho_t^{\mathcal{C}})$$

$$d\operatorname{Tr}\left[\sigma_{j}^{z}\rho_{t}^{\mathcal{C}}\right] = -\sqrt{8\kappa}\operatorname{var}\left(\sigma_{j}^{z},\rho_{t}^{\mathcal{C}}\right)dW_{t}^{j}$$

Sfixed states 17> or 12> 1 27

weak probing

intermediate

strong pro bing

Symmetry breaking – effect of measurements

Coarse grained measurements

evolution expected by ignorant agent does not distinguish states!

monitoring breaks symmetry in each realization

Monitoring agent can influence properties of symmetry-broken state

Outlook: Phase transitions in finite time: Defect suppression

SO FAR: ISOLATED SYSTEMS, NO MONITORING

What is known: Kibble-Zurek mechanism (KZM) predicts mean density of topological defects

News beyond KZM: Full counting statistics of topological defects

The End

Thank you!

"Quantum speed limits under continuous quantum measurements", Luis Pedro García-Pintos and Adolfo del Campo, arXiv:1804.01600 (2018)

"Spontaneous symmetry breaking induced by quantum monitoring", Luis Pedro García-Pintos, Diego Tielas, and Adolfo del Campo, arXiv:1808.08343 (2018)

"Universal Statistics of Topological Defects Formed in a Quantum Phase Transition" AdC, Phys. Rev. Lett. 121, 200601 (2018)